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Abstract We use the work done on and the heat removed from a system to maintain it in a
nonequilibrium steady state for a thermodynamic-like description of such a system as well
as of its fluctuations. Based on an extended Onsager-Machlup theory for nonequilibrium
steady states we indicate two ambiguities, not present in an equilibrium state, in defining
such work and heat: one due to a non-uniqueness of time-reversal procedures and another
due to multiple possibilities to separate heat into work and an energy difference in non-
equilibrium steady states. As a consequence, for such systems, the work and heat satisfy
multiple versions of the first and second laws of thermodynamics as well as of their fluctua-
tion theorems. Unique laws and relations appear only to be obtainable for concretely defined
systems, using physical arguments to choose the relevant physical quantities. This is illus-
trated on a number of systems, including a Brownian particle in an electric field, a driven
torsion pendulum, electric circuits and an energy transfer driven by a temperature difference.

Keywords Nonequilibrium steady states · Extended Onsager-Machlup theory · Work and
heat definitions and fluctuations · Time-reversal ambiguity · Brownian particle · Electric
and energy transfer models

1 Introduction

Of all steady states of systems, the equilibrium state is by far the most studied. First, a ther-
modynamic description has been developed involving the work done by or on the system
or the heat produced by or removed from the system. This leads to the first law of ther-
modynamics, i.e. the law of energy conservation, while the introduction of entropy leads to
the second law of thermodynamics, i.e. that entropy changes in a closed system have to be
non-negative.

A generalization to systems in nonequilibrium steady states (NESS) has been made as a
special case of the general theory of thermodynamics of irreversible processes (irreversible
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thermodynamics) for systems in local, i.e. near equilibrium [1]. This theory has in turn been
enlarged to an extended irreversible thermodynamics [2], where in addition to the usual local
quantities (local mass density, local velocity and local energy density) also the correspond-
ing irreversible thermodynamic currents of mass, momentum and energy (or heat) are taken
into account for a description of the system. Also in that context NESSs can be considered.
NESSs, as well as their fluctuations, have also be considered in hydrodynamics [3].

The major difference between all these thermodynamic theories of NESSs and the at-
tempt proposed here to describe NESSs, is that all these theories are ultimately based on a
direct generalization of equilibrium thermodynamics and, in particular, the use of the same
concepts of work and heat as in equilibrium. To the contrary, the theory developed here
introduces fundamentally different definitions of work and heat, associated with a NESS,
rather than those used in the above equilibrium thermodynamic based theories. In fact, we
propose a thermodynamic-like description of systems in NESSs by defining the work as-
sociated with such a system as the work that has to be done on the system to maintain it
in its NESS and prevent it from decaying to an equilibrium state. Similarly we define the
heat associated with such a system as the heat that has to be removed from the system to
eliminate the heat produced by the irreversible (nonequilibrium) processes which take place
in such systems.

We develop this theory for NESS using an extension of the classical path integral theory
of Onsager and Machlup [4, 5] for fluctuations in the equilibrium state to NESSs, used
already by us in two previous papers for a specific model [6, 7]. An introduction to this
theory, relevant for this paper, can be found in the first paper [6]. The present paper attempts
to present the general structure, applied to a variety of models, for discussing the NESS as
an extension of the equilibrium state and to exhibit the conceptual differences between these
two steady states of a system and their fluctuations.

In fact, contrary to the NESS, the equilibrium state is an absolutely stable state, which
maintains itself without the necessity of any work to be done on it, nor of the removal of any
spontaneously produced heat, since this heat vanishes on average in an equilibrium state.
For that reason the Onsager-Machlup theory of fluctuations of the equilibrium state, does
not consider any work done on the system and only considers the entropy production rate
associated with the fluctuations in the equilibrium state. The absence of any work allows
the formulation of a theory of fluctuations in the equilibrium state, based on the entropy
production associated with these fluctuations, alone. Therefore the Onsager-Machlup theory
does not contain any equilibrium thermodynamic work.

This is completely different for a NESS, where the presence of external “forces” (char-
acterized by appropriate nonequilibrium parameters), keeps the system permanently out of
equilibrium, requiring “actions” involving work and heat to maintain this system in a NESS
and prevent it from decaying to the absolutely stable equilibrium state. Then a generaliza-
tion of the two laws of equilibrium thermodynamics is possible, which require, however,
NESS adapted definitions of work and heat, which are, together with the internal energy, the
ingredients of a thermodynamic-like formulation of the NESS.

The extension of the Onsager-Machlup theory for fluctuations in the equilibrium state
to one for NESS, turned out to be non-trivial. This, since such a generalization involves in
general ambiguities, i.e. multiple a priori possible choices for the work, heat and energy and
their fluctuations in a NESS. The Onsager-Machlup theory for the equilibrium state pro-
vides us though with a starting point to deal with these problems and to obtain a physically
unique description of the thermodynamic laws and the fluctuations of a NESS, at least for
the specific models considered in this paper.

Implementation of the above outlined program is based on Onsager and Machlup’s path
integral method. This involves, not only the above mentioned new definitions of the NESS



Nonequilibrium Steady State Thermodynamics and Fluctuations 635

adapted thermodynamic-like quantities of work and heat, but also new definitions of forward
and corresponding backward paths in time because of the presence of external nonequilib-
rium parameters in the NESS. The main difficulty and the origin of these ambiguities arising
then is that an appropriate choice of a backward path for a given forward path is not unique
and depends on the nature of the system in the NESS. In addition, there is an intrinsic am-
biguity because work and energy differences can only be defined up to a common quantity.
It appears at present that these ambiguities can only be resolved on physical grounds for
specific concrete models.

The contents of this paper are organized in three parts as follows. After the introduction
in this Sect. 1, we introduce in Sec. 2 the class of systems in NESSs which we will consider
in this paper. We studied three classes. (A) Systems under a constant force, such as an
electrically charged Brownian particle in a fluid subject to an external electric field E [cf.
Fig. 1(a)]; (B) Systems coupled to an oscillator, as, e.g. a Brownian particle confined by
a harmonic oscillator, which is dragged through the fluid with a constant velocity v by an
outside force [cf. Fig. 2(a)]; (C) Systems with two random noise sources. An example is two
independent heat reservoirs at different temperatures, each containing a Brownian particle,
which are coupled to each other harmonically, allowing an energy current from one reservoir
to the other [cf. Fig. 3(a)]. For each class we introduce not only Brownian particle models
but also corresponding electric circuit models. In total we consider eight models: two of
Class A, four of Class B and two of Class C. Each of these models can be described by a
Langevin equation, which is given explicitly in a common form in the next Sect. 3 by (17).

In the second part of the paper, in Sect. 3, we discuss the extended Onsager-Machlup
theory for a NESS and show how to obtain appropriate definitions of the heat and work
from our general point of view. We first introduce the path integral method for the Langevin
dynamics (17), based on a Lagrangian to give a probability functional of paths. Then, fol-
lowing Onsager and Machlup, we write this Lagrangian for the NESS as a sum of dissipation
functions and an entropy production rate, where the latter allows us a definition of the heat
in the NESS by integrating over time and multiplying by the average temperature of the heat
reservoirs, connected to the system.1 By minimizing this Lagrangian we obtain the average
path, which then leads to the non-negativity of the entropy production for the average path,
i.e. the validity of the second law of thermodynamics for the average path. Finally, using
the energy conservation law (the first law of thermodynamics), the work is obtained as a
sum of the heat and the internal energy difference. This work consists of four parts: (i) work
given by the partial time-derivative of the internal energy, (ii) work done by an external
driving force, (iii) work caused by a time-irreversible force, and (iv) work by a temperature
difference between reservoirs.

In this part of the paper we also discuss in detail the role of time-reversal for our extended
Onsager-Machlup theory for NESSs. We point out in detail the difficulties associated with
the ambiguity of defining an appropriate backward path associated with a given forward
path due to the presence of external nonequilibrium parameters η, e.g. a dragging velocity
v or an electric field E , which specify the NESS forces or currents [6]. This point has been
overlooked in some papers [9, 10]. To formulate this ambiguity, a time-reversal operator Î±
is introduced which reverses (indicated by a hat) the direction of the (internal) motion (the
velocity) of the system, as compared with that on the forward path, as well as a possible, but
not always necessary, reversal of the sign of the external nonequilibrium parameter η (indi-
cated by ± in Î±). A time-reversal procedure involving a change of sign of a nonequilibrium

1Note that in this paper we consider the entropy production in NESSs, rather than a NESS entropy itself [8].
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parameter was already used before in shear flow systems [11, 12]. Two possible definitions
can therefore be given for the heat, corresponding to a + or − sign in Î±, respectively, as
well as for the work and the internal energy, leading to two possible expressions for the
energy conservation law for each (not only the average) path, i.e. the first law as well as for
the second law of (NESS) thermodynamics.

In Sect. 4 we discuss nonequilibrium detailed balance relations and the transient fluctua-
tion theorems [13] for work, which hold for both Î+ and Î−. All the above laws and relations
are therefore unaffected by the ambiguities mentioned above, i.e. they are valid relations for
the NESS, independent of the above ambiguities. For the transient fluctuation theorems this
must be due to the fact that they are mathematical identities [14]. This means here that one
obtains two formal identities, without the need to identify the appropriate thermodynamic
work on physical grounds, as is necessary for a physical discussion of particular systems.
This “universal” validity of the transient fluctuation theorems could disappear for asymp-
totic fluctuation theorems [15, 16] for NESSs as was indeed shown in a previous paper for
the case of a dragged Brownian particle model [6].

In the third part of the paper, Sect. 5, we will illustrate how the above mentioned am-
biguities can be eliminated and lead to unique choices of the heat and work to maintain a
NESS in a variety of models introduced in Sect. 2. Although these models are all linear we
do not expect the nature of our considerations to be qualitatively changed, if non-linearities
in the potentials, occurring in these models, are introduced. However, the dependence of,
in particular, fluctuations on the properties of the stochastic noise is much less clear [17,
18].

2 NESS Models

Before discussing our extended Onsager-Machlup theory for NESSs, we restrict our selves
here to some typical NESS models all described by Langevin equations. Using these mod-
els, we give concrete examples of external nonequilibrium parameters which specify the
system in a NESS (so vanish at equilibrium) and change their signs with a reversal of the
steady state force or current. These parameters play a crucial role in this paper and co-
determine the choice of the proper time reversal procedure to calculate relevant work and
heat to associate with a system, as will be discussed later. The internal energies for these
models are also given in this section and will be used to determine the work to maintain
a NESS in the following sections. As mentioned in Sect. 1, we discuss these NESS mod-
els by separating them into three classes: Class A for models driven by a constant external
force, Class B for systems coupled to an oscillator, and Class C for models with two random
noises.

2.1 Class A: Systems under a Constant Force

(a) The first (and possibly simplest) example is an electrically charged Brownian particle in
a fluid in a uniform electric field. The Langevin equation for this system is given by

mẍs = qE − αẋs + ζs (1)

for the particle position xs at the time s, where m is the mass, q the electric charge of the
particle, E a constant external electric field, α the friction coefficient of the particle in the
fluid, ẍs ≡ d2xs/ds2 and ẋs ≡ dxs/ds. Furthermore, ζs is a Gaussian-white random force
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Fig. 1 NESS models of Class A:
a a charged particle driven by a
constant electric field and b an
electric circuit consisting of an
inductor and resistor in series.
For an explanation of the
symbols, see the text

whose first two auto-correlation functions are given by 〈ζt 〉 = 0 and 〈ζt1ζt2〉 = (2α/β)δ(t1 −
t2), respectively, with β the inverse temperature of the heat reservoir and the notation 〈· · ·〉
for an ensemble average.2 The Brownian particle is driven by a constant force qE via the
external field E which plays the role of the external nonequilibrium parameter in this model
and vanishes at equilibrium. A schematic illustration for this system is given in Fig. 1(a).
The internal energy E of this system is given by

E(ẋs) = 1

2
mẋ2

s . (2)

It is important to note that here we regards qE as an “external” driving force and its cor-
responding potential energy is not included in the “internal” energy E. In this system, the
Brownian particle achieves a constant average velocity v = qE/α in a NESS. Note that a
nonequilibrium state driven by a constant force can be realized in a variety of other ways,
for example, in a Brownian particle under a constant gravitational force.

(b) As a second example we consider an electric circuit consisting of an inductor (with
self-inductance L) and a resistor (with resistance R) in series [19], as shown in Fig. 1(b). In
this circuit, the voltage V of the battery is equal to Lİs +RIs + δVs with the electric current
Is through the resistor and a voltage random noise δVs in the resistor. Combining this with
Is = q̇s , where qs is the charge received from the battery by the resistor at the time s, we
obtain the Langevin equation

Lq̈s = V − Rq̇s − δVs. (3)

Here, we assume that δVs is a Gaussian-white random noise whose first two auto-correlation
functions are given by 〈δVs〉 = 0 and 〈δVsδVs′ 〉 = (2R/β)δ(s − s ′) by the Johnson-Nyquist
theorem [20, 21]. The external nonequilibrium parameter in this model is given by the volt-
age V of the battery. We note that the two Langevin equations (1) and (3) have the same
form. We summarized correspondences of the quantities in these two equations in Table 1.
Noting these correspondences, the energy E of this electric circuit model is given by (2)
with a replacement of m and xs by L and qs , respectively, i.e. by E(q̇s) = (1/2)Lq̇2

s .

2.2 Class B: Systems Coupled to a Harmonic Oscillator

As the second class of NESS models, we consider a system under an oscillating force.

2Note the coefficient 2α/β in 〈ζt1ζt2 〉 is due to the fluctuation dissipation theorem, which is, strictly speaking,
justified around equilibrium. In this report, we assume that it is still correct for our NESS models.
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Table 1 Correspondences of quantities in various NESS models. The external nonequilibrium parameters
characterizing the deviations of the systems from an equilibrium state are E and V in Class A, and v, I , A

and ξ in Class B, respectively. Explanation of symbols is in the text

Class Class A Class B

Brownian particle xs m α ζs qE κ v

Electric circuit qs L R −δVs V 1/C I (parallel)

CA (serial)

Torsion pendulum θs I λ ζs σ ξ/σ

(a) The first example in this class is a Brownian particle confined by a harmonic potential
which is dragged by a constant velocity v in a fluid [6, 7, 10, 22, 23]. The Langevin equation
for this system is given by

mẍs = −κ(xs − vs) − αẋs + ζs (4)

for the particle position xs with the oscillator spring constant κ and the Gaussian-white
random force ζs . In this model, the dragging velocity v plays the role of the external non-
equilibrium parameter which is zero at equilibrium. A schematic illustration of this model
is given in Fig. 2(a). In this model the internal energy E of the particle is given by

E(ẋs, xs) = 1

2
mẋ2

s + 1

2
κ(xs − vs)2, (5)

where the second term on the right-hand side is the potential energy of the particle in the
harmonic oscillator.

Although the model described by (4) may be regarded as a Brownian particle model
producing a constant average velocity of the particle, like the electric field driven model
described by (1), we should notice there are clear differences between these two models. In
this dragged Brownian particle model (Class B), the particle moves with a constant average
velocity even if there is no friction, since the average velocity of the particle is independent
of the friction coefficient α. On the other hand, in the electric field driven model (Class A),
the average velocity of the particle will depend on the friction coefficient and if there is no
friction then the particle accelerates indefinitely. We also note that there is no explicit time-
dependent parameter in the force in the electric field driven model, while for a Brownian
particle dragged by a constant velocity there is an explicit time-dependence in the force via
vs in (4). These “simple” differences will manifest themselves in different definitions of
work and heat in NESSs, as will be discussed in Sects. 5.1 and 5.2.

(b) The same form as the Langevin equation (4) appears for an electric circuit in which
an inductor and resistor in series are coupled with a capacitor in parallel [24], as shown in
Fig. 2(b). We first derive a Langevin equation for this system. Denoting the electric current
through the resistor by I ′

s = q̇s with qs the charge received from the battery by the resistor
at time s, as shown in Fig. 2(b), the voltage difference V1s between the ends of the inductor
and resistor in series with the Johnson-Nyquist voltage fluctuation δVs as a Gaussian-white
noise is given by V1s = Lİ ′

s + RI ′
s + δVs . On the other hand, the voltage V2s applied to the

capacitor (with the capacitance C) is given by V2s = (I s − qs)/C where I is the constant
electric current from the battery, as shown in Fig. 2(b). Here, we used that the charge of the
capacitor is given by Is − qs , i.e. the charge Is received from the battery minus the charge
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Fig. 2 NESS models of Class B: a a particle dragged by a harmonic potential with a constant velocity, b an
electric circuit with a serial inductor-resistor coupled to a capacitor in parallel, c a torsion pendulum confined
by a spring with an external torque, and d an electric circuit with an inductor, resistor and capacitor in series.
Symbols are defined in the text

qs taken to the resistor. Using that V1s = V2s and I ′
s = q̇s we obtain

Lq̈s = − 1

C
(qs − Is) − Rq̇s − δVs, (6)

which is the Langevin equation for the charge qs . The external nonequilibrium parameter
of this system is given by I . Note that, different from the previous electric circuit model
in Class A [cf. (3)] in which the voltage of the battery is constant, in this electric circuit
model, described by (6), the electric current I from the battery is assumed to be constant.
The energy of this system is given by (5) with a replacement of m, xs , κ , and v by L, qs ,
1/C and I , respectively (cf. Table 1).

(c) The third example of Class B is a torsion pendulum under an external torque in a fluid
[25, 26]. A schematic illustration of this model is given in Fig. 2(c) as a rod with the total
moment of inertia I , rotating around its center with a spring functioning as a torsion. The
time-derivative Iθ̈s of the angular momentum Iθ̇s for an angular displacement θs must be
equal to the torque applied to the rod, so that the equation of motion for θs is the Langevin
equation

Iθ̈s = −σθs +Ms − λθ̇s + ζs, (7)

where λ is the viscous damping, σ the elastic torsional stiffness of the pendulum, and Ms

the external torque. For this model, we consider the case of a linear external torque of

Ms = ξs (8)
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Fig. 3 NESS models of Class C: a two harmonically coupled particles connected to two heat reservoirs with
different temperatures, and b an electric circuit with two resistors

with a force constant ξ . Since the pendulum is driven externally by the torque (8), its coef-
ficient ξ plays the role of the external nonequilibrium parameter. In this model the internal
energy E of the particle is given by

E(θ̇s, θs) = 1

2
Iθ̇2

s + 1

2
σθ2

s (9)

as the sum of the kinetic energy and the torsion energy.
It is important to note that although the Lagrangian equation (7) with the torque (8) has

the same form as (4) (cf. Table 1), the energy (9) in this driven torsion pendulum model
does not have the same form as the energy (5) for the dragged Brownian particle model.
As shown later in this paper, this difference of energy also appears as a difference in the
definition of the work. Another difference between these two models is that for the driven
torsion pendulum model the average internal energy increases with time in a NESS, leading
to a time-proportional work rate as will be discussed in Sect. 5.2, while in the dragged
Brownian particle model the average internal energy is independent of time in a NESS with
a constant average work rate.

(d) As the last example in Class B, we consider an electric circuit consisting of an in-
ductor, resistor and capacitor in series with a time-dependent applied voltage Vs = As with
a constant A [24]. [See Fig. 2(d) for a schematic illustration of this model.] The Langevin
equation for the charge qs is given by

Lq̈s = −qs

C
+ As − Rq̇s − δVs. (10)

In this model, the equilibrium state is realized when A = 0, so that A is the external non-
equilibrium parameter. Note that the Langevin equation (10) has the same form as (4), (6)
and (7) (cf. Table 1). The energy of this system is given by (9) with the replacements of I ,
θs and σ by L, qs and 1/C, respectively (cf. Table 1).

2.3 Class C: Systems with Two Random Noises

As the last category of NESS models discussed in this paper, we introduce stochastic models
with two random noises.

(a) The first example in this category consists of two Brownian particles coupled by a
spring, where each particle is confined to a heat reservoir at a different temperature (cf. [23,
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27, 28]). We give a schematic illustration of this model in Fig. 3(a). The Langevin equation
for the positions x1s and x2s of the first and second particle, respectively, is given by

mẍjs = −κ(xjs − xks) − αẋjs + ζjs (11)

with j �= k, j = 1,2 and k = 1,2. Here, ζ1s and ζ2s are two independent Gaussian-white
random forces at different temperatures T + �T/2 and T − �T/2, respectively, so that
〈ζjs〉 = 0 and 〈ζjsζj ′s′ 〉 = (2α/βj )δjj ′δ(s − s ′), j = 1,2 and j ′ = 1,2, with the inverse tem-
peratures βj ≡ {kB[T + (−1)j+1�T/2]}−1. For simplicity we assumed identical masses and
friction coefficients for the two particles. In this system, a NESS is sustained with an energy
transfer between the two reservoirs due to the temperature difference �T as an external
nonequilibrium parameter. The internal energy E of this system is given by

E(ẋs ,xs) =
2∑

j=1

1

2
mẋ2

js + 1

2
κ(x1s − x2s)

2 (12)

with xs ≡ (x1s , x2s).
(b) We can consider a similar stochastic system with two random noises in an electric

circuit as in Fig. 3(b), which is like that in Fig. 2(b), except for an additional resistance next
to the battery. We denote by I1s = q̇1s the electric current associated with charge q1s through
the resistor 1 (with resistance R1) next to the inductor and by I2s = q̇2s the electric current
associated with charge q2s through the resistor 2 (with resistance R2) next to the battery.
The charge on the capacitor is given by q2s − q1s , so that the voltage drop in the capacitor
is (q2s − q1s)/C. This voltage drop is equal to the voltage difference Lİ1s + R1I1s + δV1s

between the ends of the inductor and the resistor 1 in series, and also to the one V −R2I2s −
δV2s between the ends of the battery and the resistor 2. Here, δV1s and δV2s are independent
Gaussian-white random noises in the resistors 1 and 2, respectively, with 〈δVjs〉 = 0 and
〈δVjsδVj ′s′ 〉 = (2Rj/β)δjj ′δ(s − s ′). Using these voltages, the Langevin equation for the
charges qjs is given by

Lq̈1s + R1q̇1s + δV1s = V − R2q̇2s − δV2s = q2s − q1s

C
. (13)

In this system the electric current is driven by the voltage V , which is the external nonequi-
librium parameter. The energy E of this system is given by

E(q̇s ,qs) = 1

2
Lq̇2

1s + (q1s − q2s)
2

2C
(14)

with qs ≡ (q1s , q2s).
Although we categorize the above two models as a single class C, the corresponding

Langevin equations (11) and (13) do not have exactly the same form, different from the
models in Class A or B. However, we can introduce a single Langevin equation, which
reduces to (11) and (13) as special cases:

mj ẍjs = �δj2 − κ(xjs − xks) − αj ẋjs + ζjs, (15)

with j �= k, j = 1,2 and k = 1,2, a constant � and two independent Gaussian-white random
noises ζ1s and ζ2s at different temperatures T + �T/2 and T − �T/2, respectively, so that
〈ζjs〉 = 0 and 〈ζjsζj ′s′ 〉 = (2αj/βj )δjj ′δ(s − s ′). We take η = (�T ,�) with two external
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nonequilibrium parameters �T and � in this model. The internal energy E of this system is
given by

E(ẋs, xs) =
2∑

j=1

1

2
mj ẋ

2
js + 1

2
κ(x1s − x2s)

2. (16)

Equations (15) and (16) become (11) and (12), respectively, in the case of m1 = m2 = m,
α1 = α2 = α and � = 0, while they reduce to (13) and (14), respectively, in the case of
xjs = qjs , m1 = L, m2 = 0, � = V , κ = 1/C, αj = Rj , ζjs = −δVjs and β1 = β2 = β (i.e.
�T = 0).

After having introduced here the NESS models on which this paper is based, we now
discuss the theory which we will apply to them.

3 NESS Onsager-Machlup Theory

In this section we discuss an extended Onsager-Machlup theory for NESSs, or simply the
NESS Onsager-Machlup theory, for linear stochastic models introduced in the previous sec-
tion.

3.1 Path Integral Approach to Stochastic Dynamics

We can write the Langevin equations for all the models in the previous Sect. 2, in the form:

mj ẍjs = Fj (xs , s;μ) − αj ẋjs + ζjs, (17)

j = 1,2, . . . ,N , for a system with N degrees of freedom described by xs ≡ (x1s , x2s , . . . ,

xNs). Here, xjs is a position (charge), mj a mass (self-inductance), αj a friction coefficient
(resistance), and Fj a mechanical force (voltage) in Brownian (electric circuit) models, re-
spectively. We note that μ in Fj (xs , s;μ) indicates a mechanical (electrical) external non-
equilibrium parameter. Furthermore, ζjs incorporates a Gaussian-white random noise, so
that 〈ζjs〉 = 0 and 〈ζjsζj ′s′ 〉 = (2αj/βj )δjj ′δ(s − s ′) with the inverse temperatures βj .

Note that systems with N degrees of freedom have already been considered in Onsager
and Machlup’s original theory using N independent variables a1, a2, . . . , aN for any integer
number N [4, 5]. (Also see the introduction of [6].) However, we emphasize that for our
models introduced in Sect. 2 it is enough to consider N = 1 or 2, i.e. N = 1 for Classes
A and B or N = 2 for Class C, although our general theory developed in Sects. 3 and 4 is
formally correct for any N .

Although the mechanical force Fj (xs , s;μ) could be a nonlinear function of xs in the
Langevin equation (17), we restrict ourselves in this paper to functions linear in xjs , consis-
tent with the linear Langevin equations used in the previous Sect. 2, which is sufficient for
the purposes of this paper. Thus we will impose the condition

〈Fj (xs , s;μ)〉 = Fj (〈xs〉, s;μ) (18)

for the ensemble average of the force Fj (xs , s;μ) which is linear with respect to xs . We
will use this condition (18) to discuss the second law of thermodynamics in Sect. 3.3 of this
paper. Otherwise, the linearity of the force Fj is not used in the general theory developed in
this paper.
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Similarly, we assume for the models of Class C that the temperature difference between
the two heat reservoirs is small, so that

∣∣∣∣
�Tj

T

∣∣∣∣ � 1 (19)

where T is the average temperature T ≡ (1/N)
∑N

j=1 Tj and �Tj is the deviation �Tj ≡
Tj − T of the temperature Tj ≡ 1/(kBβj ) of the j -th reservoir from T with the Boltzmann
constant kB . We will calculate quantities like work and heat up to the lowest non-vanishing
order in |�Tj/T |. Here, �T ≡ (�T1,�T2, . . . ,�TN) plays a role of the thermal nonequi-
librium parameter and combining it with the mechanical nonequilibrium parameter μ we
obtain the total external nonequilibrium parameter η = (μ,�T). In this paper we also as-
sume that Fj (xs , s;μ) and αj do not depend on �Tj .

For later use, we now implement the stochastic dynamics, given by the Langevin equa-
tion (17), using a path integral approach. Thereto, we note that the probability func-
tional Pζ ({ζ s}) of the Gaussian-white random noise ζ s ≡ (ζ1s , ζ2s , . . . , ζNs) is given by
Pζ ({ζ s}) = Cζ exp{−∑N

j=1[βj/(4αj )]
∫ t

t0
ds ζ 2

js} from the initial time t0 to the final time t ,
with the normalization constant Cζ . By inserting ζ s from the Langevin equation (17)
into this functional Pζ ({ζ s}) and interpreting Pζ ({ζ s}) then as the probability functional
Px({xs}) for the path {xs}s∈[t0,t], we obtain [7], apart from a normalization constant,

Px({xs}) = Cx exp

[∫ t

t0

dsL(ẍs , ẋs ,xs , s; η)

]
(20)

with the normalization constant Cx . Here the function L(ẍs , ẋs ,xs , s; η) of ẍs , ẋs , xs and s

is a Lagrangian given by [7]

L(ẍs , ẋs ,xs , s; η) = −
N∑

j=1

αjβj

4

[
ẋjs − 1

αj

Fj (xs , s;μ) + mj

αj

ẍjs

]2

. (21)

[See also, for example, [29] for a derivation of the probability functional (20) via the Fokker-
Planck equation corresponding to the Langevin equation (17).]

3.2 Time-Reversal in NESS

Time-reversal plays a crucial role in nonequilibrium thermodynamics. For example, the
Onsager-Casimir symmetry relations between two linear transport coefficients have a dif-
ferent sign, depending on the behavior of thermodynamic variables under time reversal [1,
30–32]. Moreover, in the Onsager-Machlup fluctuation theory around equilibrium [4, 5],
the entropy production rate is directly related to the difference of a Lagrangian for a for-
ward path and the corresponding Lagrangian for a time-reversed (or backward) path. In the
next subsection we will discuss a generalization of this argument for the entropy production
around equilibrium states to NESSs. But first, before such a discussion, we must clarify an
essential difference of a time-reversal procedure in NESSs from that in equilibrium states.

In equilibrium states, the time-reversal of the dynamics is unique and is simply given by
a change of sign of the particle velocity ẋs . On the other hand, the time-reversal in NESSs
is not unique. This is due to the two independent kinds of motions in such states: an inter-
nal intrinsic particle motion given by ẋs , but, in addition, by an externally induced motion
characterized by the external nonequilibrium parameter η. Therefore, in NESSs, we have
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two choices for a time-reversal procedure of the dynamics: either a change of sign of ẋs

only, which has always to be done to obtain a time-reversed path, or a change of the signs
of both ẋs and η. To discuss these two time-reversal procedures explicitly, we introduce the
time-reversal operator Î± for NESSs by

Î±X({xs}; η) = X({xt+t0−s};±η) (22)

for any functional X({xs}; η) of the path {xs}s∈[t0,t] and the external nonequilibrium para-
meter η.3 Under this time-reversal operation, the direction of motion of the particle on the
forward path {xs}s∈[t0,t] in the functional X({xs}; η) is transformed into {xt+t0−s}s∈[t0,t] with
the same geometry of the path but with the initial and final positions on the forward path (on
the time-reversed path) given by xt0 and xt (xt and xt0 ), respectively. This time-reversal oper-
ation for the internal motion represented by the particle position xs is indicated by the hat ˆ
on the operator Î±. On the other hand, the other time-reversal procedure associated with the
external nonequilibrium parameter η as well is referred to by adding the subscripts ± in the
operator Î±, so that Î− (Î+) does change (does not change) the sign of the nonequilibrium
parameter η under this time-reversal operation.

So far, we have chosen the initial time t0 and the final time t independently, to make
clear their roles. However, for convenience, in the remaining part of this paper, we choose,
without loss of generality, the origin of the time in the middle of the initial time t0 and the
final time t , so that t0 = −t . By taking this origin of the time, the length of the time interval
for s ∈ [t0, t] is given by t − t0 = 2t .

We now discuss some properties of the time-reversal operator Î± useful for later. First,
by (22) the time-reversal operator Î± satisfies the relation

Î±2 = 1. (23)

Second, it can also be shown for this time-reversal operator that

Î±
∫ t

−t

dsY (ẍs , ẋs ,xs , s;η) =
∫ t

−t

dsY

(
d2x−s

ds2
,
dx−s

ds
,x−s , s;±η

)
(24)

=
∫ t

−t

dsY (ẍs ,−ẋs ,xs ,−s;±η), (25)

for any function Y (ẍs , ẋs ,xs , s; η) of ẍs , ẋs , xs , s and η. Equation (25) means that the ef-
fect of the time-reversal operator Î± on a functional of the form

∫ t

−t
ds Y (ẍs , ẋs ,xs , s; η)

is expressed not only by the change ẋs → −ẋs of the (internal) particle velocity, but also
by the changes s → −s of the explicit time-dependence, and by η → ±η for the external
nonequilibrium parameter in the function Y (ẍs , ẋs ,xs , s; η).

3.3 Dissipation Functions, Entropy Production and the Second Law of Thermodynamics

In this and the next subsections, using the time-reversal procedure introduced in the previous
Sect. 3.2, we formulate an extended Onsager-Machlup theory for NESSs in three steps: [i]
calculation of the entropy production rate as the time-irreversible part of the Lagrangian,

3Here and in the rest of the paper we adopt the convention that any equation containing the symbols ± on the
left- and right-hand sides, denote two equations, one with only the upper symbol (+ in ±) and the other with
only the lower symbol (− in ±).
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leading to the second law of thermodynamics (Sect. 3.3), [ii] introduction of the heat via the
entropy production rate (Sect. 3.4), and [iii] introduction of the work from the heat and an
internal energy difference using the energy conservation or the first law of thermodynamics
(Sect. 3.4).

To discuss the first step for the NESS Onsager-Machlup theory, we separate the La-
grangian L into a time-reversal invariant (even) part and a time-irreversible (odd) part as

L(ẍs , ẋs ,xs , s; η) = − 1

2kB

[
±(ẍs ,xs , s; η) − Ṡ±(ẍs , ẋs ,xs , s; η)

]
, (26)

where ± and Ṡ± are defined by

±(ẍs , ẋs ,xs , s;η) ≡ −kB[L(ẍs , ẋs ,xs , s;η) +L(ẍs ,−ẋs ,xs ,−s;±η)], (27)

Ṡ±(ẍs , ẋs ,xs , s;η) ≡ kB [L(ẍs , ẋs ,xs , s;η) −L(ẍs ,−ẋs ,xs ,−s;±η)]. (28)

From (27) and (28), using the property (25) for the time-reversal operator Î±, we obtain

Î±
∫ t

−t

ds±(ẍs , ẋs ,xs , s;η) =
∫ t

−t

ds±(ẍs , ẋs ,xs , s;η), (29)

Î±
∫ t

−t

dsṠ±(ẍs , ẋs ,xs , s;η) = −
∫ t

−t

dsṠ±(ẍs , ẋs ,xs , s;η) (30)

for the time-reversal part ± and the time-irreversible part Ṡ± of the Lagrangian L, respec-
tively.

A major point in the Onsager-Machlup theory is then that the odd part of the Lagrangian
is identified with the entropy production rate [4, 5]. To discuss the physical interpretation
for the odd part Ṡ± of the Lagrangian L for NESSs, we first have to give more explicit forms
for Ṡ± and ±. By inserting the Lagrangian (21) into (27) and (28), we obtain

±(ẍs ,xs , s;η) = 
(1)
± (ẋs ,xs , s;η) + 

(2)
± (ẍs ,xs , s;η) + 

(3)
± (ẍs , ẋs ,xs , s;η), (31)

Ṡ±(ẍs , ẋs ,xs , s;η) =
N∑

j=1

1

Tj

[
F

(e)
j± (xs , s;μ) − mj ẍjs

] [
ẋjs − 1

αj

F
(o)
j± (xs , s;μ)

]

+
(3)
± (ẍs , ẋs ,xs , s;η), (32)

where 
(k)
± , k = 1,2,3 are defined by


(1)
± (ẋs ,xs , s;η) ≡

N∑

j=1

αj

2Tj

[
ẋjs − 1

αj

F
(o)
j± (xs , s;μ)

]2

, (33)


(2)
± (ẍs ,xs , s;η) ≡

N∑

j=1

1

2αjTj

[
F

(e)
j± (xs , s;μ) − mj ẍjs

]2
, (34)


(3)
± (ẍs , ẋs ,xs , s;η) ≡ 1 + (−1)(1±1)/2

2

N∑

j=1

αj

2

�Tj

T
2 − (�Tj )2

×
[
ẋjs + 1

αj

Fj (xs ,−s;±μ) − mj

αj

ẍjs

]2

(35)
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and F
(e)
j± and F

(o)
j± are defined by

F
(e)
j± (xs , s;μ) ≡ 1

2

[
Fj (xs , s;μ) + Fj (xs ,−s;±μ)

]
, (36)

F
(o)
j± (xs , s;μ) ≡ 1

2

[
Fj (xs , s;μ) − Fj (xs ,−s;±μ)

]
(37)

as the even (e) part and the odd (o) part of the force Fj = F
(e)
j± + F

(o)
j± , respectively, under

the time-reversal procedures s → −s and either η → +η or η → −η. [See Appendix 1 for
a derivation of (31) and (32).] Here, 

(1)
± and 

(2)
± correspond to the dissipation functions in

the Onsager-Machlup theory [6] and 
(3)
+ = 0. Using (26) and (31) the Lagrangian can be

represented as the sum of the dissipation functions, 
(3)
± and minus the entropy production

rate, i.e. L = −[1/(2kB)][(1)
± + 

(2)
± + 

(3)
± − Ṡ±] for NESSs, in a similar way as in the

Onsager-Machlup theory for equilibrium states.
Equations (33) and (34) show that the dissipation functions 

(1)
± and 

(2)
± are always non-

negative and time-reversal invariant, i.e. 
(k)
± ≥ 0 and Î±

∫ t

−t
ds 

(k)
± = ∫ t

−t
ds 

(k)
± , k = 1,2.

This non-negativity of the dissipation functions is directly related to the non-negativity of
the entropy production rate for the average path, namely the second law of thermodynamics,
in the linear regime. To show this, we note that in our NESS Onsager-Machlup theory, the
average path {〈xs〉}s∈[−t,t] is given by the variational principle

L(ẍs , ẋs ,xs , s; η) = maximum for xs = 〈xs〉, (38)

leading to the average Langevin equation m〈ẍjs〉 = Fj (〈xs〉, s;μ) − αj 〈ẋjs〉 using (18) and
(21), i.e.

〈ẋjs〉 − 1

αj

F
(o)
j± (〈xs〉, s;μ) = 1

αj

[
F

(e)
j± (〈xs〉, s;μ) − m〈ẍjs〉

]
(39)

with (36) and (37). Using (39), we see that 2 times the dissipation functions (33) and (34)
and the entropy production rate (32) minus 

(3)
± coincide with each other for the average

path, i.e.:

Ṡ±(〈ẍs〉, 〈ẋs〉, 〈xs〉, s;η) − 
(3)
± (〈ẍs〉, 〈ẋs〉, 〈xs〉, s;η)

= 2
(1)
± (〈ẋs〉, 〈xs〉, s;η) = 2

(2)
± (〈ẍs〉, 〈xs〉, s;η). (40)

Combining (40) with the non-negativity of the dissipation functions 
(1)
± and 

(2)
± we obtain

Ṡ±(〈ẍs〉, 〈ẋs〉, 〈xs〉, s;η) − 
(3)
± (〈ẍs〉, 〈ẋs〉, 〈xs〉, s;η) ≥ 0. (41)

This is a statement of the second law of thermodynamics in our NESS Onsager-Machlup
theory for NESSs.4 We also note that (41) expresses a non-negativity of Ṡ± − 

(3)
± for the

average path {〈xs〉}s∈[−t,t], but the quantity Ṡ± − 
(3)
± itself can be negative for other paths,

in contrast to the dissipation functions 
(1)
± and 

(2)
± , which are always non-negative for any

path.

4The inequality (41) is different from the conventional second law of thermodynamics by the term −
(3)
± ,

but, as will be shown in Sect. 5, the term 
(3)
± disappears for the physical entropy production rate to maintain

a NESS for all models introduced in Sect. 2.
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3.4 Heat, Energy, Work and the First Law of Thermodynamics

We now derive, as one of the main results of this paper, the appropriate heat and work to
maintain the NESSs, from the entropy production rate Ṡ±.

Using the entropy production rate Ṡ±, we introduce the heat Q± produced in the system
on the trajectory {xs}s∈[t0,t] by

Q±({xs};η) ≡ T

∫ t

−t

ds Ṡ±(ẍs , ẋs ,xs , s;η). (42)

Inserting (32) into (42) and using T −1
j = T

−1[1−�Tj/T ]+O(|�Tj/T |2) and the condition
(19) we obtain

Q±({xs};η) =
N∑

j=1

(
1 − �Tj

T

) ∫ t

−t

ds
[
F

(e)
j± (xs , s;μ) − mj ẍjs

] [
ẋjs − 1

αj

F
(o)
j± (xs , s;μ)

]

+ 1 + (−1)(1±1)/2

2

N∑

j=1

αj

2

�Tj

T

∫ t

−t

ds

[
ẋjs + 1

αj

Fj (xs ,−s;±μ) − mj

αj

ẍjs

]2

+O

(∣∣∣∣
�Tj

T

∣∣∣∣
2
)

(43)

as a concrete form of the heat Q± up to the first order in �Tj/T . The terms involving
�Tj on the right-hand side of (43) give the heat produced by the system with temperature
differences between reservoirs.

We now discuss properties of the heat Q± from its definition (42). We first note that due
to (30) and (42) the heat Q± is anti-symmetric under time-reversal, i.e.

Î±Q±({xs};η) = −Q±({xs};η). (44)

Using (20), (28) and (42) we can also show that

Q±({xs};η) = β
−1

∫ t

−t

ds [L(ẍs , ẋs ,xs , s;η) −L(ẍs ,−ẋs ,xs ,−s;±η)] (45)

= β
−1

ln
Px({xs};η)

Î±Px({xs};η)
(46)

with β ≡ 1/(kBT ). Equation (45) connects directly the heat Q± with a time-irreversible
part of the Lagrangian L. Equation (46) implies that the behavior of the dynamics under
time-reversal makes the probability functional Px({xs}; η) for the forward path not equal to
the corresponding probability functional Î±Px({xs}; η) for the backward path and a nonzero
heat is due to this non-equality. Derivation of the heat (or the entropy production) from
a ratio between the probability functionals for the forward and backward paths is a direct
result by the Onsager-Machlup theory [4–6], and a similar relation has been used in some
papers to discuss fluctuation theorems [9, 13, 33].

We now proceed to introduce the internal energy and then the work using the energy
conservation law as a relation among the heat, the internal energy and the work. To introduce
the internal energy, we first separate the even part F

(e)
j± of the force Fj into a force due to
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the internal potential U± and a force fj± due to the external driving force (e.g. an external
electric force on a charged particle):

F
(e)
j± (xs , s;μ) = −∂U±(xs , s;μ)

∂xs

+ fj±(xs , s;μ). (47)

The separation of the force into a potential force and an external driving force, like in (47),
has already been used before, cf. [34]. Using the potential U±, we next introduce the internal
energy E± by

E±(ẋs ,xs , s;μ) ≡
N∑

j=1

1

2
mj ẋj

2
s
+ U±(xs , s;μ) (48)

as the sum of the kinetic energy
∑N

j=1(1/2)mj ẋj
2
s

and the potential energy U±.
Using this energy, we introduce the energy difference �E± by

�E± ≡ E±(ẋt ,xt , t;μ) − E±(ẋ−t ,x−t ,−t;μ) (49)

as the difference of the internal energy at the final time t and the initial time t0 = −t .
Now we will introduce the work. We first note that in physical processes the external

work is transformed into heat and a change of the internal energy, as expressed in the en-
ergy conservation law. From this, the work W± done along the trajectory {xs}s∈[−t,t] is then
defined by

W±({xs};η) = Q±({xs};η) + �E±. (50)

Equation (50) leads to an expression of the first law of thermodynamics for NESSs, by
taking its functional average [cf. (64) in Sect. 4.2].

As a remark about the internal energy and the work, in the above argument we first
introduced the heat Q± by (42), then separated it into the energy difference �E± and the
work W± via Q± = W± − �E±, i.e. (50). However, this separation of the heat into the
work and the energy difference is not unique, due to the non-uniqueness of the separation
(47) of the force F

(e)
j± into an external force fj± and an internal potential force −∂U±/∂xs ,

which introduces the potential U± appearing in the energy E±. This non-uniqueness of the
potential actually happens in the models discussed in Sect. 2.2 where the dragged Brownian
particle model and the driven torsion pendulum model are described by the same Langevin
equations, but have different internal energies. This non-uniqueness, or ambiguity, in the
introduction of a potential, by a separation of the force on the particles into a force due to
an internal potential and an external driving force, can only be resolved for specific models,
it seems, on physical grounds, rather than by mathematical arguments alone.

A related remark about the above argument to introduce the work and the energy in a
NESS is that we assumed that there is no contribution from the odd part F

(o)
j± of the force Fj

to the internal potential U± [cf. (47)] and therefore to the energy E±. This then implies that
the internal energy E± is time-reversal invariant, i.e.

E±(−ẋs ,xs ,−s;±μ) = E±(ẋs ,xs , s;μ). (51)

Using (51) we obtain

Î±�E± = Î±
∫ t

−t

ds
dE±(ẋs ,xs , s;μ)

ds
= −�E±, (52)
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i.e. the energy difference �E± is anti-symmetric under time-reversal. Equations (44), (50)
and (52) lead to

Î±W±({xs};η) = −W±({xs};η), (53)

so that the work done on a backward path has the same magnitude but the opposite sign of
the work done on the corresponding forward path. Equation (53) will play an important role
to derive the correct work fluctuation theorem in Sect. 4.2.

To discuss the physical meaning of the work W± defined formally by (50), we now give
it in more explicit form. Inserting (43) and (49) into (50) we obtain

W±({xs};η) = W (e)
± ({xs};μ) +W (f )

± ({xs};μ) +W (o)
± ({xs};μ)

+W (t)
± ({xs};η) +O

(∣∣∣∣
�Tj

T

∣∣∣∣
2
)

, (54)

where W (e)
± , W (f )

± , W (o)
± and W (t)

± are defined by

W (e)
± ({xs};μ) ≡

∫ t

−t

ds
∂E±(ẋs ,xs , s;μ)

∂s
, (55)

W (f )
± ({xs};μ) ≡

N∑

j=1

∫ t

−t

ds fj±(xs , s;μ)ẋjs , (56)

W (o)
± ({xs};μ) ≡ −

N∑

j=1

1

αj

∫ t

−t

ds
[
F

(e)
j± (xs , s;μ) − mj ẍjs

]
F

(o)
j± (xs , s;μ), (57)

W (t)
± ({xs};η)

≡ −
N∑

j=1

�Tj

T

∫ t

−t

ds
[
F

(e)
j± (xs , s;μ) − mj ẍjs

] [
ẋjs − 1

αj

F
(o)
j± (xs , s;μ)

]

+ 1 + (−1)(1±1)/2

2

N∑

j=1

αj

2

�Tj

T

∫ t

−t

ds

[
ẋjs + 1

αj

Fj (xs ,−s;±μ) − mj

αj

ẍjs

]2

.

(58)

[See Appendix 2 for a derivation of (54).] In (54) the total work W± has been separated
into the four parts: W (e)

± , W (f )
± , W (o)

± and W (t)
± . The first part W (e)

± comes from the partial
time-derivative of the energy (e) E±. This is the work used in [35–37]. The second part
W (f )

± is the work done by the external driving force (f ), f±, while the third part W (o)
± of

the work is due to the odd (o) part F
(o)
j± of the force. We remark that this third part of the

work includes a d’Alembert type force −mẍs as noted by Onsager and Machlup [5] and
also by the authors [6, 7]. The last part W (t)

± is due to the temperature (t ) differences �Tj

among reservoirs. In Sect. 5, we will consider concrete examples for the four different kinds
of works W (e)

± , W (f )
± , W (o)

± and W (t)
± using the NESS models discussed in Sect. 2. From the

explicit form (54) of the work, together with (55), (56), (57) and (58), we can show that the
work W± is a purely nonequilibrium quantity and vanishes at equilibrium, W± = 0, because
the energy E± does not have an explicit time-dependence (so that W (e)

± = 0), fj± = 0 (so
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that W (f )
± = 0), F

(o)
j± = 0 (so that W (o)

± = 0) and �Tj = 0 (so that W (t)
± = 0). At equilibrium,

where Onsager and Machlup formulated their fluctuation theory [4, 5], the energy balance
equation is simply given by Q± = −�E± from (50) using W± = 0.

Finally, we want to make some remarks about the ambiguities caused by the non-
uniqueness of the time-reversal operator Î± in NESSs. In this section we have discussed
how to introduce thermodynamic quantities like the entropy production rate, the heat, the
internal energy and the work, etc., suitable for a NESS. However, so far we could only spec-
ify for each of them two possibilities, e.g. Ṡ+ or Ṡ− for the entropy production rate, W+ or
W− for the work, and so on, due to the two possibilities (+ or −) contained in the time-
reversal operator Î± for NESSs. The above arguments do not answer the question, which
of these two actually represents the physical work, etc. to maintain a NESS. Both works
W+ or W− and heats Q+ or Q− satisfy the energy conservation (first) law (50) and both
entropy production rates Ṡ+ and Ṡ− satisfy the second law of thermodynamics (41). One of
the possible criteria to choose the physical work, etc. to maintain a NESS, is that we choose
one of the two time-reversal operators Î+ and Î− in such a way that the internal energy E

must have the time-reversal symmetry (51). In this way, for example, as will be discussed
in Sect. 5.2, we can choose the correct time-reversal operator Î− for the dragged Brownian
particle model in the laboratory frame, noting that the energy (5) has the time-reversal sym-
metry for the time-reversal operator Î− with η = v. Therefore, the quantities with the suffix
“−”, like W−, Ṡ− and Q−, give the physical quantities to maintain a NESS for the dragged
Brownian particle model. Another criterion to choose the physical quantities to maintain a
NESS is that the average of the work and the heat in the NESS must be strictly positive,
because we always need to do positive average work (as well as remove positive average
heat) to sustain the system in a NESS. This condition also leads to a strictly positive entropy
production on average in NESSs. As we will see in Sect. 5, for some NESS models, only one
of the averages of Ṡ+ and Ṡ− is strictly positive while the other vanishes in NESSs. In such
a case, we can regard the strictly positive entropy production as the physical one to maintain
a NESS and we can choose the heat, energy and work, etc., corresponding to this physical
entropy production. In Sect. 5, we will illustrate the resolution of the above ambiguities in
the choice for the physical heat and work, etc, using the systems discussed in Sect. 2. To
discuss this point, hereafter we will use the terminology of the “physical NESS” heat and
work for the heat and work to sustain a NESS, respectively.

4 Fluctuation Theorems

So far, we have discussed the definition of the entropy production, the heat, the internal
energy and the work in NESSs. These quantities are introduced as functions of a path, so that
they include information not only of their ensemble averages (over all paths) but also of their
fluctuations. In this section we discuss their fluctuating properties in terms of fluctuation
theorems using our NESS Onsager-Machlup theory. We restrict our arguments to the NESS
detailed balance condition and the corresponding transient fluctuation theorem where the
initial state is a canonical-like state. For other fluctuation theorems, like the asymptotic
fluctuation theorem for any initial state, we refer to other papers [6, 7, 38] for specific models
(e.g. a dragged Brownian particle model) based on an extended Onsager-Machlup theory.

4.1 Nonequilibrium Detailed Balance Relation

Up until now we have emphasized the role of the work W± to distinguish NESSs from
equilibrium states. However, this work also plays an important role in a detailed balance
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condition for NESSs, which we call the nonequilibrium detailed balance relation. This re-
lation has been already discussed in [6] for the dragged Brownian particle model and was
used there to derive transient fluctuation theorems for work. In this section we generalize
this to the classes of NESS models discussed in Sect. 2.

The nonequilibrium detailed balance relation including the work W± can be derived from
(46), (49) and (50) as

e−β[W±({xs };η)−�F±] Px({xs};η) �±(ẋ−t ,x−t ,−t;μ) = �±(ẋt ,xt , t;μ) Î±Px({xs};η),

(59)

where �±(ẋs ,xs , s;μ) is a formal canonical-like distribution function defined by

�±(ẋs ,xs , s;μ) ≡ exp
{
β

[
F±(s;μ) − E±(ẋs ,xs , s;μ)

]}
(60)

with F± given by

F±(s;μ) ≡ − 1

β
ln

∫
dẋs

∫
dxs exp

[−βE±(ẋs ,xs , s;μ)
]
, (61)

to normalize the canonical-like distribution function �±(ẋs ,xs , s;μ). Here, in (59), �F± is
defined by

�F± ≡ F±(t;μ) −F±(−t;μ), (62)

i.e. the difference of F± between the initial time t0 = −t and the final time t .
We will now show that the nonequilibrium detailed balance relation (59) reduces to

the well-known equilibrium detailed balance condition. We first note that at equilibrium
�F± = 0, W± = 0 and that there is then also no distinction between the two time-reversal
operators, i.e. Î+ = Î−, since the external nonequilibrium parameter is zero: η = 0. Thus,
at equilibrium we can write �± = f [eq](ẋs ,xs) using an equilibrium canonical distribu-
tion function f [eq](ẋs ,xs). Secondly, we introduce the transition probability P

( ẋf ,xf

t

∣∣ ẋi ,xi

−t

)

from an initial (i) point (ẋi ,xi ) at time t0 = −t to a final (f) point (ẋf ,xf ) at time t ,
which is given in terms of the probability functional Px({xs}) for paths {xs}s∈[−t,t] by

P
( ẋf ,xf

t

∣∣ ẋi ,xi

−t

) = ∫ (ẋt ,xt )=(ẋf ,xf )

(ẋ−t ,x−t )=(ẋi ,xi )
Dxs Px({xs}), i.e. taking the path integral (denoted by

Dxs ) of Px({xs}) over all paths {xs}s∈[−t,t] under the conditions (ẋ−t ,x−t ) = (ẋi ,xi ) and
(ẋt ,xt ) = (ẋf ,xf ). Using this and inserting the above equations �F± = 0, W± = 0 and
�± = f [eq] for equilibrium states into Eq. (59), we obtain the equilibrium detailed balance
condition P

( ẋt ,xt

t

∣∣ ẋ−t ,x−t

−t

)
f [eq](ẋ−t ,x−t ) = f [eq](ẋt ,xt ) P

( ẋ−t ,x−t

t

∣∣ ẋt ,xt

−t

)
.

4.2 Transient Fluctuation Theorems for Work

The nonequilibrium detailed balance relation (59) imposes a special relation on the proba-
bility distribution function for work, which is called a transient fluctuation theorem [13]. To
discuss this theorem, we introduce the probability distribution function Pw±(W, t; η) for the
work W± as

Pw±(W, t;η) = 〈〈δ(W −W±({xs};η))〉〉t . (63)
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Here, 〈〈· · ·〉〉t indicates the functional average, which is defined by

〈〈X({xs})〉〉t ≡
∫

dẋf

∫
dxf

∫ (ẋt ,xt )=(ẋf ,xf )

(ẋ−t ,x−t )=(ẋi ,xi )

Dxs

∫
dẋi

∫
dxi

×X({xs})Px({xs})f (ẋi ,xi ,−t) (64)

for any functional X({xs}) of the path {xs}s∈[−t,t], where f (ẋi ,xi ,−t) is the initial distri-
bution function of the initial position xi and the initial velocity ẋi . The work distribution
function (63) can be rewritten in the form (cf. [6])

Pw±(W, t;η) = 1

2π

∫ +∞

−∞
dσ eiσWEw±(iσ, t;η) (65)

with E±(σ, t; η) defined by

Ew±(σ, t;η) ≡ 〈〈e−σW±({xs };η)〉〉t . (66)

The function Ew±(iσ, t; η) can be regarded as a Fourier transformation of the work distri-
bution function Pw±(W, t; η), as well as a generation function for the work W±({xs}; η).
The work distribution function Pw±(W, t; η) was obtained for all W and t by carrying out
explicitly path integrals for dragged Brownian particle models as in [6, 7].

In the remaining part of this section, we assume that the initial distribution function
f (x−t , ẋ−t ,−t) at the initial time t0 = −t is given by the canonical-like distribution function
(60), i.e.

f (x−t , ẋ−t ,−t) = �±(ẋ−t ,x−t ,−t;μ). (67)

In that case, we obtain

Ew±(β − σ, t;η) = e−β�F± Î±Ew±(σ, t;η). (68)

Equation (68) leads then to two generalized transient fluctuation theorems:

Pw±(W, t;η)

Î±Pw±(−W, t;η)
= eβ(W−�F±) (69)

for the work distribution function Pw±(W, t; η). [See Appendix 3 for a derivation of (68) and
(69).] We emphasize that (69) is a relation for work fluctuations described by the distribution
function Pw±(W, t; η), for the special canonical-like initial condition (67) [cf. (60)].

The two generalized transient fluctuation theorems (69) reduce both to the usual tran-
sient fluctuation theorem [13] when the energy E± is the equilibrium energy independent
of the external nonequilibrium parameter η [so that then the initial distribution function
(67) is an equilibrium canonical distribution function f [eq](ẋs ,xs)] and also the condition
�F± = 0 is satisfied.5 Note that (69) implies two transient fluctuation theorems; one for
Pw+(W, t; η) and the other for Pw−(W, t; η), as mathematical identities satisfied at any time

5The energy E is independent of the external nonequilibrium parameter η for all the models discussed in
Sect. 2 of this paper, except for the dragged Brownian particle model in the laboratory frame (cf. Sect. 5.3)
and its corresponding electric circuit model, when �±(ẋs ,xs , s;μ) is an equilibrium canonical distribution
function. In addition, the condition �F± = 0 is satisfied for all the models discussed in this paper.
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for a canonical-like initial distribution. Both these transient fluctuation theorems could be
checked experimentally. These two different transient fluctuation theorems, for example, for
the physical NESS work and for a work to overcome the friction in the dragged Brownian
particle model, have already been discussed in [6].

Finally, one may notice that the transient fluctuation theorems (69) have a similar form
as the so-called Crooks theorem [39, 40], which is a type of transient fluctuation theorem
involving a free energy difference. However, (69) is not exactly the same as the Crooks
theorem. First, in the Crooks theorem the work is always given by (55), i.e. a time-integral
of the partial time-derivative of the energy only, while in (69) the work W± does not have
such a simple form, noting that the work (54) can contain, in general, other contributions,
as given by (56), (57) and (58). Second, the energy E± is, in general, not the equilibrium
energy because it can include the external nonequilibrium parameter η, so that the quantity
F± defined by (61) does not have to be an equilibrium free energy, contrary to the Crooks
theorem.

5 Illustration of the Forgoing Theory on Specific NESS Systems

In Sect. 3, we obtained the work and the heat for NESS systems described by a linear
Langevin equation. In this section, first, using the simple models introduced in Sects. 2.1
and 2.2 as Classes A and B, we check that our formal expressions for the work and the
heat in Sect. 3 indeed yield the physical NESS work and heat to maintain a NESS. For
these discussions, we mainly use the Brownian particle and pendulum models and omit ar-
guments for the corresponding electric circuit models since their results can be obtained by
the correspondences in Table 1 between the Brownian particle (and pendulum) models and
the electric circuit models. After that, we will also discuss the physical NESS work for more
complicated NESS models introduced in Sect. 2.3 as Class C.

5.1 Class A

First, we apply our NESS Onsager-Machlup theory to the models discussed in Sect. 2.1,
categorized as Class A.

For the electric field driven model in Class A, using the force F1 = qE the Lagrangian
(21) is represented by L = −(αβ/4)[ẋs − qE/α + (m/α)ẍs]2. Using this Lagrangian we
can calculate the entropy production rate Ṡ± by (28), then the heat Q± by (42) and the
work W± by (50) using the energy of (2). Alternatively, using the force F1 = qE with the
external nonequilibrium parameter η = μ = E , the work can also be calculated directly from
(54) with (55), (56), (57) and (58). These calculations are straightforward, so we omit their
details and only show their results in Table 2. In this Table we exhibit especially the work
W±, since the heat Q± is given by Q± = W± − �E± [i.e. (50)] in terms of the work W±
and the energy difference �E± of (49).

In this model, the physical NESS work should be given by the work done by the external
electric force qE . This work indeed appears as W+ = ∫ t

−t
ds qE ẋs in the above calculation

for the work (54). This physical NESS work is zero at equilibrium E = 0. Using the average
velocity 〈ẋs〉 = v = qE/α for this model in the NESS, the average work rate corresponding
to this physical NESS work W+ is given by (qE)2/α in the NESS, i.e. proportional to the
square of the external nonequilibrium parameter E . Thus, the average work, as well as the
average heat and entropy production rate, are strictly positive in NESSs, as we required at
the end of Sect. 3.4.
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Table 2 Expressions for the work W± in the NESS models described by Langevin equations in Sects. 2.1,
2.2 and 5.3 as Classes A and B. We also show the external nonequilibrium parameter η, the energy E, the

relevant time-reversal operator Î± , the forces F
(e)
1± , F

(o)
1± and f1± to be used to obtain the physical NESS

work, and the (strictly positive) average physical NESS work rate. The energy, the external nonequilibrium
parameter and the work in this Table are for Brownian particle (and pendulum) models, and the corresponding
quantities for electric circuit models can be obtained using the correspondences in Table 1

Class Class A Class B

Model Electric field Dragged Brownian Dragged Brownian Driven torsion

driven model particle in the particle in the pendulum

laboratory frame comoving frame

Langevin Equations (1), (3), Equations (4), (6), Equations (7), (10),

equation, Figs. 1(a), 1(b), Figs. 2(a), 2(b), Equation (71) Figs. 2(c), 2(d)

figure, Sects. 2.1 Sects. 2.2 in Sect. 5.3 Sects. 2.2

section and 5.1 and 5.2 and 5.4

Nonequi-

librium E v v ξ

parameter

Internal 1
2 mẋ2

s1
2 mẋ2

s
1
2 mẏ2

s + 1
2 κy2

s
1
2I θ̇2

s + 1
2 σθ2

senergy + 1
2 κ(xs −vs)2

Time-

reversal Î+ Î− Î− Î−
operator

F
(e)
1+ = qE , F

(e)
1− = F

(e)
1− = −κys , F

(e)
1− =

Forces F
(o)
1+ = 0, −κ(xs − vs), F

(o)
1− = −αv, −σθs +Ms ,

f1+ = qE F
(o)
1− = 0, f1− = 0 F

(o)
1− = 0,

f1− = 0 f1− = Ms

NESS W+ =W(f )
+ W− = W(e)

− = W− = W(o)
− = W− = W(f )

− =
work = ∫ t

t0
dsqE ẋs −∫ t

t0
dsκ(xs −vs)v −∫ t

t0
ds(κys + mÿs)v

∫ t
t0

dsMs θ̇s

Average

NESS (qE)2

α > 0 αv2 > 0 αv2 > 0 ξ2

σ t > 0

work rate

W− =W(o)
− No W+ W+ = W(f )

+ W+ = W(o)
+Non- = ∫ t

t0
dsmẍsv [The energy does = −∫ t

t0
dsαẏsv = 1

λ

∫ t
t0

dsMs
NESS

(Zero average in not satisfy (51) (Zero average in ×(σθs + I θ̈s )
work

NESS) for Î+.] NESS)

Although it is not the physical NESS work, we can still calculate the work W− for the
electric field driven model. It is given by

∫ t

−t
mẍsv, i.e. the work to maintain a motion of the

particle with an average velocity v (= qE/α) by the total force mẍs (= qE − αẋs + ζs). In
the NESS, the average of this work W− is zero since then 〈ẍs〉 = 0, so that following our
requirement for the average physical NESS work to be strictly positive in the NESS, this
work W− cannot be the physical NESS work.
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5.2 Class B

We now discuss the work and the heat for Class B discussed in Sect. 2.2. For the dragged
Brownian particle model of this class described by (4), the mechanical force is given by
F1 = −κ(xs − vs) [cf. (4) and (17)] and then the Lagrangian (21) by L = −(αβ/4)[ẋs +
κ(xs − vs)/α + (m/α)ẍs]2. For the driven torsion pendulum model [cf. (7)], the force F1

and the Lagrangian L can simply be obtained using Table 1 from the corresponding F1 and
L for the dragged Brownian particle. Then, in a similar fashion as in the previous section for
Class A, we can obtain expressions for the heat Q± and the work W±, etc. for these models,
using the NESS Onsager-Machlup theory. These results are also summarized in Table 2.

From the works W+ and W− in Table 2, the work W− gives the physical NESS work to
sustain a NESS for these models. Actually, the average work rates for these physical NESS
works in the NESS are given by αv2 and ξ 2t/σ for the dragged Brownian particle and the
driven torsion pendulum, respectively, which are strictly positive and even functions of the
external nonequilibrium parameter, as required for the physical NESS work.

It is important to note that the physical NESS work in Class B is W−, different from
Class A where the physical NESS work is given by W+. Moreover, even within the same
Class B with the same form of the Langevin equation, the physical NESS work is different
for the dragged Brownian particle model, where W− = − ∫ t

t0
ds κ(xs − vs)v, and the driven

torsion pendulum model, where W− = ∫ t

t0
ds Ms θ̇s . This difference in the physical NESS

work is due to a difference of the external driving force f1−, in other words, the difference
between (5) and (9) for the internal energy of these two models.

It may also be noted that there is no difference between the internal energies E+ and E−
[cf. (48) and Table 2] for the driven torsion pendulum model (as in the electric field driven
model in Class A), so that we can obtain both the works W+ and W− for this model. On
the other hand, there is no E+ for the dragged Brownian particle model because that energy
does not satisfy the time-symmetric condition (51) for the energy using Î+, leaving Î− as
the only possible time-reversal operator, giving the correct physical results. Therefore, there
is no W+ in this model.

Finally, as shown in Table 2, the physical NESS works for the models of Classes A and
B in Sects. 2.1 and 2.2 are of two types: the type (55) for the dragged Brownian particle
model (Class B), and the type (56) for the electric field model (Class A) and the driven
torsion pendulum model (Class B). In the next Sect. 5.3 we discuss another case in which
the physical NESS work is of the third type (57) of work.

5.3 Dragged Brownian Particle in a Comoving Frame

The Langevin equation (4) describes the dynamics of a dragged Brownian particle in the
laboratory frame, where xs is the particle position in the laboratory frame. In this subsection
we discuss this dragged Brownian particle in the comoving frame [6, 7]. In that case, the
physical NESS work is given by a qualitatively different type of expression than discussed
in the proceeding Sects. 5.1 and 5.2. This provides an interesting illustration of the general
theory discussed in Sect. 3.

The spatial coordinate ys of the Brownian particle in the comoving frame for this system
is given by

ys ≡ xs − vs, (70)

and its dynamics is expressed by the Langevin equation

mÿs = −κys − αv − αẏs + ζs. (71)
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Note that different from the Langevin equation (4) for the laboratory frame, (71) does not
have an explicit time-dependence and the nonequilibrium effect appears just as a constant
term −αv. In this frame the internal energy E of the particle is given by

E(ẏs, ys) = 1

2
mẏ2

s + 1

2
κy2

s (72)

which is independent of the external nonequilibrium parameter η = v, different from the
laboratory case. Note that the internal energy (72) for the comoving frame is different from
the internal energy (5) for the laboratory frame because of a frame-dependence of the kinetic
energy [7].

In this model, the mechanical force and the Lagrangian are given by F1 = −κys − αv

and L = −(αβ/4)[ẏs + (κ/α)ys + v + (m/α)ÿs]2, respectively [6, 7]. Using this force or
Lagrangian, we can calculate the quantities like Ṡ±, Q±, W±, etc., in a similar way as in the
previous Sects. 5.1 and 5.2 for the models of Classes A and B in the laboratory frame. We
summarize the results in the 4-th column of Table 2.

Different from the models in Sects. 2.1 and 2.2, the physical NESS work W− for this
model in the comoving frame is of the type (57) involving the odd part force F

(o)

1− = −αv

of the force F1. Note that this physical NESS work is obtained by using the same time-
reversal operator Î− as in the laboratory frame, but that it includes an additional effect due
to the d’Alembert type of force −mÿs , absent in the laboratory frame. This d’Alembert type
force has no effect on the average physical NESS work nor on the average work rate αv2 in
the NESS, which are therefore frame-independent. However, as discussed in [7], fluctuation
properties of the work are influenced by this d’Alembert type force.

Another difference between the comoving and the laboratory frames in the dragged
Brownian particle model is that in the comoving frame, the energy is time-reversal invari-
ant, satisfying the condition (51) under both time-reversal procedures Î+ and Î−. Therefore,
different from the laboratory frame, we can obtain the other work W+, which is the work
to overcome the friction, i.e. W+ = − ∫ t

−t
ds αẏsv.6 The average of this work W+ is zero in

the NESS, so that it cannot be the physical NESS work.

5.4 Class C

As the last example for nonequilibrium work, we consider stochastic models with two ran-
dom noises as in Class C introduced in Sect. 2.3. One of these models is an example in
which the work is of the type (58).

For Class C, whose Langevin equation is expressed by (15), the mechanical force Fj is
given by

Fj (xs , s;μ) = �δj2 − κ(xjs − xks) (73)

for j �= k, j = 1,2 and k = 1,2. Inserting (73) and N = 2 into (21), the Lagrangian L is
given explicitly by

L (ẍs , ẋs ,xs , s;η) = −α1β1

4

[
ẋ1s + κ (x1s − x2s)

α1
+ m1

α1
ẍ1s

]2

− α2β2

4

[
ẋ2s + κ (x2s − x1s) − �

α2
+ m2

α2
ẍ2s

]2

(74)

6In [6] the work −∫ t
−t ds αẏsv was called the “energy loss by friction”.
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as the sum of two terms due to the presence of two independent random noises. Applying
our general theory given in Sect. 3 to this model expressed by the Lagrangian (74), we obtain
the quantities Ṡ±, Q±, W±, etc. Especially, the work W±({xs}, η) is given by

W+({xs},η) = �T

2T

∫ t

−t

ds [κ (x1s − x2s) (ẋ1s + ẋ2s) + m1ẋ1s ẍ1s − m2ẋ2s ẍ2s]

+
(

1 + �T

2T

)
�

∫ t

−t

ds ẋ2s +O

(∣∣∣∣
�T

T

∣∣∣∣
2
)

(75)

and

W−({xs},η) = �T

4T

∫ t

−t

ds

{ [m1ẍ1s + κ(x1s − x2s)]2 + (α1ẋ1s)
2

α1

− [m2ẍ2s + κ(x2s − x1s)]2 + (α2ẋ2s − �)2

α2

}

+�

∫ t

−t

ds
m2ẍ2s + κ(x2s − x1s)

α2
+O

(∣∣∣∣
�T

T

∣∣∣∣
2)

, (76)

up to first order in |�T/T |, respectively, with �T = T1 − T2 = 2�T1 = −2�T2 and
T = T . The works (75) and (76) are zero at equilibrium where �T = � = 0. In addition,
(75) and (76) give the works in a unified form for both the energy transfer model driven by a
temperature difference and the electric circuit with two resistors in Class C. In the remainder
of this section, we discuss their physical meanings in these two models separately.

5.4.1 Energy Transfer Model by a Temperature Difference

We first discuss the energy transfer model driven by a temperature difference, which is
described by the Langevin equation (11), i.e. (15) in the case of m1 = m2 = m, α1 = α2 = α

and � = 0. In Table 3 we show the work W± obtained from (75) and (76) in this case. These
works are typical examples for the work W (t)

+ as given by (58) for N = 2.
To choose the physical NESS work from W+ and W− in Table 3 it is enough to note

that in the NESS the physical NESS work should be zero in the case of κ = 0, i.e. no
coupling between the two reservoirs. The work W− does not vanish in the case of κ = 0,
while the work W+ vanishes in such a case apart from a boundary term, which disappears
in the NESS on average. Therefore, we conclude that the work W+ obtained by the time-
reversal operator Î+ gives the physical NESS work in the energy transfer model driven by
a temperature difference. As further evidence for the appropriateness of the physical NESS

work W+, we note that the average work rate Ẇ+ corresponding to this (fluctuating) work

W+ in the NESS is given by Ẇ+ = ακkB(�T )2/[2T (α2 + mκ)] up to the second order

in �T , as shown in Appendix 4. Thus, Ẇ+ is strictly positive and an even function of the
temperature difference �T , which are necessary conditions for the average work rate to
keep the system in a NESS.

This average work rate Ẇ+ has some interesting features due to inertial effects via the

term mκ . Its value is zero at α = 0 (as well as at κ = 0), has a finite maximum [Ẇ+ =
kB(�T )2√κ/(4T

√
m) at α = √

mκ as a function of α, and Ẇ+ → αkB(�T )2/(2mT ) for
κ → +∞ as a function of κ], and is close to its over-damped value (at m = 0) for large α or
small κ .
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Table 3 Expressions for the work W± in the NESS models of Class C. We also show the external nonequi-

librium parameter η, the internal energy E, the relevant time-reversal operator Î± and the forces F
(e)
j± , F

(o)
j±

and fj± to be used to obtain the physical NESS work, and the (strictly positive) average physical NESS work
rate

Class Class C

Model Energy transfer model driven Electric circuit

by a temperature difference with two resisters

Langevin

equation, Equation (11), Fig. 3(a), Equation (13), Fig. 3(b),

figure, Sects. 2.3 and 5.4.1 Sects. 2.3 and 5.4.2

section

Nonequi-

librium �T V

parameter

Internal ∑2
j=1

1
2 mẋ2

js
+ 1

2 κ(x1s − x2s )
2 1

2 Lq̇2
1s

+ (q1s−q2s )
2

2Cenergy

Time-

reversal Î+ Î+
operator

F
(e)
1+ = − 1

C
(q1s − q2s ),

F
(e)
1+ = −F

(e)
2+ = −κ(x1s − x2s ),

F
(e)
2+ = V − 1

C
(q2s − q1s ),

Forces F
(o)
1+ = F

(o)
2+ = 0,

F
(o)
1+ = F

(o)
2+ = 0,

f1+ = f2+ = 0
f1+ = 0, f2+ = V

W+ = W(t)
+ = �T

2T

[ ∫ t
t0

ds κ (x1s − x2s ) (ẋ1s + ẋ2s )NESS W+ =W(f )
+ = ∫ t

t0
dsV I2swork

+ 1
2 m

(
ẋ2

1t
− ẋ2

1t0

)
− 1

2 m
(
ẋ2

2t
− ẋ2

2t0

) ]
+O

(∣∣∣ �T
T

∣∣∣
2
)

Average

NESS ακkB(�T )2

2T (α2+mκ)
> 0 V 2

R1+R2
> 0

work rate

Non- W− = W(t)
− = �T

4T

∫ t
t0

ds

{
α(ẋ2

1s
− ẋ2

2s
) + m

α (ẍ1s + ẍ2s ) W− =W(o)
−

NESS
×[

m(ẍ1s − ẍ2s ) + 2κ (x1s − x2s )
]}

+O
(∣∣∣ �T

T

∣∣∣
2
)

= V
R2C

∫ t
t0

ds (q2s − q1s )work

5.4.2 Electric Circuit with Two Resistors

We categorized the electric circuit with two resistors, described by the Langevin equation
(13), in the same Class C as well as the above energy transfer model, although they look very
different at first sight. The common feature for these models is that both systems are coupled
to two independent random noises. However, different from the electric circuit models in
Classes A and B, results for this electric circuit model in Class C cannot be derived from the
ones for the corresponding Brownian model simply by using the correspondences in Table 1,
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since the Langevin equations (11) and (13) for the models in Class C have different forms.
Therefore, we have to discuss the physical quantities of this electric circuit model in Class
C separately.

The electric circuit model with two resistors is described by the Langevin equation (15)
in the case of xjs = qjs , m1 = L, m2 = 0, � = V , κ = 1/C, αj = Rj , ζjs = −δVjs and
β1 = β2 = β (i.e. �T = 0). Therefore, from (75) and (76) the works W± for this system can
be obtained (cf. Table 3). It is clear that the work W+ is the physical NESS work done by the
battery with the voltage V to produce electric current I2s = q̇2s . We note that the physical
NESS work W+ for this model is of the type (56), different from that for the energy transfer
model in which the physical NESS work is of the type (58). We also show in Appendix 4 that

in this model the average work rate Ẇ+ in the NESS is given by Ẇ+ = V 2/(R1 +R2). This
average work rate is strictly positive and is an even function of the external nonequilibrium
parameter V , as it should be.

6 Summary and Remarks

In this paper we have discussed a method to calculate the work done on and the heat removed
from a system to maintain it in a NESS. This was based on a NESS Onsager-Machlup theory
for stochastic systems with Gaussian-white random noises. The work to maintain a NESS
appears only for NESSs, and not for equilibrium states. Like in the Onsager-Machlup theory
we obtained the heat as the time-irreversible part of the probability functional for paths in
a function space via a Lagrangian, and from it the work, using the energy conservation
law. We incorporated multiple possibilities for the time-reversal procedure for NESSs, due
to the external nonequilibrium parameters to specify the NESS. We also indicated that the
separation of the heat into work and an energy difference is not unique, so that we can get
different expressions for the work for systems described by the same dynamical equation.
We showed that the work can consist of four parts: one coming from a partial time-derivative
of the energy, the second one due to an external driving force, the third one caused by a
time-irreversible force and the last one due to temperature differences of reservoirs. We
also derived nonequilibrium generalizations of the detailed balance condition, leading to
transient fluctuation theorems for the work distribution functions. Our theory was based on
various NESS models, for example, dragged Brownian models, a driven torsion pendulum
model, electric current models, an energy transfer model driven by a temperature difference,
demonstrating the above four kinds of components for the work.

Finally, we make some remarks on the contents of this paper.
(1) We first make some remarks about the ambiguities to define the physical NESS work

by the NESS Onsager-Machlup theory.
(1a) The first ambiguity is a non-uniqueness of time-reversal procedures due to the pres-

ence of external parameters, defining the NESS. This can be treated by the introduction of
two time-reversal operators Î+ and Î−, leading to two candidates for the physical NESS
work, i.e., W+ and W−. To chose the physical NESS work, i.e. the actual work to main-
tain the system in a NESS, from W+ and W− we had to use model-dependent physical
arguments, for example, (i) The strict positivity of the average work in the NESS [cf. the
electric field model (Class A) and the dragged Brownian particle model in the comoving
frame (Class B)], since positive work on average has to be done to sustain the system in a
NESS, (ii) The time-reversal symmetry (51) for the internal energy7 [cf. the dragged Brown-

7Note that if the internal energy were time-irreversible, then the energy of the final state of the forward path
would not equal the initial energy of the corresponding backward path.
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ian particle model in the laboratory frame (Class B)]. However, to what extent a general
criterion can be found to choose the physical NESS work from W+ and W− is an open
problem.

(1b) The second ambiguity to choose the physical NESS work is due to multiple pos-
sibility to separate heat into work and an energy difference. In our theory, this ambiguity
appears in (47), i.e. when the even part F

(e)
j± of the external force is separated into the two

terms −∂U±/∂xjs and fj± as an essential step to define the energy E± by (48). Note that
like the first ambiguity discussed in the previous paragraph, this ambiguity also does not
appear in equilibrium because there is then no external driving force fj±. We demonstrated
this second ambiguity concretely using the dragged Brownian particle model and the driven
torsion pendulum model, which are described by the same Langevin equation but have a
different form for their internal energies. In fact, in the driven torsion pendulum model, the
torque Ms(= ξs) has been regarded as an external force not part of the system and not con-
tributing to its internal energy, while in the dragged Brownian particle model the force κvs,
which corresponds to Ms , does contribute to the internal energy and is therefore regarded to
be a part of the system. In general, this ambiguity can be resolved only on physical grounds,
i.e. by considering what is physically an internal energy for each nonequilibrium model.8 In
another example, in the electric field model in Sect. 2.1, we took the internal energy as not
to include the force qE , since this force was regarded as an external force fj+, leading to the
physical NESS work W+ = W (f )

+ shown in Table 2. However, purely mathematically, we
could have chosen the internal energy as (1/2)mẋ2

s − qExs [cf. (2)]. This choice of energy
leads to the work W+ = 0, which is unphysical, since positive work must be done to keep
the system in a NESS.

(1c) An additional remark related to the above points is that the energy conservation law
and the second law of thermodynamics are not sufficient to determine the physical NESS
work W and heat Q uniquely, because one can always add the same quantity X with a
positive average (X > 0) to both the work and the heat so that these new “work” W +X and
“heat” Q+ X satisfy the energy conservation law Q+ X = (W + X) − �E and the second
law of thermodynamics Q+ X = Q + X ≥ 0. However, in our NESS Onsager-Machlup
theory this ambiguity does not occur, because the heat is fixed by (46) via the probability
functional Px({xs}; η) of paths.

(2) We now make some remarks on the time-reversal operator Î± for our NESS Onsager-
Machlup theory. In particular, we comment on the relation of these operators with other
possible time-reversal operators which have been used in the literature.

(2a) In [41] a time-reversal operator Î ′ is introduced by

Î ′
∫ t

−t

ds Y (ẍs , ẋs ,xs , s) =
∫ t

−t

ds Y (ẍs ,−ẋs ,xs , s) , (77)

for any function Y (ẍs , ẋs ,xs , s) of ẍs , ẋs , xs , s, under which the explicit time-dependence s

in Y (ẍs , ẋs ,xs , s) does not change its sign. By the definition (77), the time-reversal operator
Î ′ is independent of the external nonequilibrium parameter η. This time-reversal operator
Î ′ is different from the operator Î± used in this paper, but can yet be considered as a spe-
cial case of the time-reversal operator Î−. This, because (25) for the operator Î− becomes
(77) if the explicit η- and s-dependences of Y (ẍs , ẋs ,xs , s; η) appear only via ηs, i.e. if

8This difficulty does not occur if one considers only the work (55) given by a partial time-derivative of the
energy, as done in [35–37]. However, as shown in this paper, this relation connecting the work and the energy
is not valid in general since the work can have other contributions (56), (57) and (58).
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Y (ẍs , ẋs ,xs , s; η) = Ỹ (ẍs , ẋs ,xs , ηs) with a function Ỹ (ẍs , ẋs ,xs , ηs). However, the opera-
tor Î ′ can not be used as an operator on a general functional X({xs}), contrary to the operator
Î± defined by (22). Moreover, the time-reversal operator Î ′ fails to produce the correct phys-
ical NESS work for some nonequilibrium models. For example, if we were to apply Î ′ to
the dragged Brownian particle model discussed in Sect. 5.3 in the comoving frame, then
we would obtain the work to overcome the friction only, i.e. − ∫ t

−t
ds αẏsv, instead of the

physical NESS work − ∫ t

−t
ds (κys + mÿs)v for this model obtained by using Î−. For these

reasons we did not use the time-reversal operator (77) in this paper.
(2b) As another example, [9] considered the case in which the sign of the external non-

equilibrium parameter does not change in a time-reversal procedure. This case corresponds
to the time-reversal operator Î+ in this paper. However, this operator does not always pro-
duce the correct physical NESS work for some models, for example, for the models of Class
B in Sects. 5.2 and 5.3. Therefore, this operator is not general enough to construct the phys-
ical NESS work and heat based on the NESS Onsager-Machlup theory for a sufficiently
general class of nonequilibrium systems which include all NESS models discussed in this
paper.

(3) In this point we make some remarks on the transient and the asymptotic fluctuation
theorems in the context of the NESS Onsager-Machlup theory.

(3a) We first consider the transient fluctuation theorem [13]. We will argue that the tran-
sient fluctuation theorem can be derived purely formally, as a mathematical identity, without
any specifications of the dynamics of the system. To show this, we first define, purely for-
mally, without any physical interpretation, the functional Q({xs}) by:

Q({xs}) ≡ 1

β
ln

P({xs})
Ĵ P({xs})

, (78)

where P({xs}) is the probability functional of the path {xs}s∈[t0,t] [cf. (46)]. Here, the opera-
tor Ĵ is a time-reversal operator. Next we introduce again purely formally another functional
W({xs}) defined by:

W({xs}) ≡ Q({xs}) + �E, (79)

where �E ≡ E(ẋt ,xt , t) − E(ẋt0 ,xt0 , t0) is a boundary term as the energy difference be-
tween the energies of the system under consideration at the final time t and the initial time t0
[cf. (49) and (50)]. Inserting then (79) into (78), we obtain as an identity:

e−β[W({xs })−�F]P({xs})�(ẋt0 ,xt0 , t0) = �(ẋt ,xt , t)Ĵ P({xs}), (80)

where �(ẋs ,xs , s) ≡ Z−1
s exp[−β E(ẋs ,xs , s)] is a formal canonical-like distribution, with

the formal partition function Zs ≡ ∫
dxs

∫
dẋs exp[−βE(ẋs ,xs , s)] [cf. (59)]. Here �F ≡

Ft − Ft0 with Fs ≡ −β−1 lnZs , a formal free energy-like quantity. If then the condition
ĴW = −W is satisfied [cf. (53)] and the energy E has the time-reversal symmetry [cf.
(51)], then the distribution Pw(W, t) = 〈〈δ(W − W({xs}))〉〉 satisfies formally a generalized
transient fluctuation theorem similar in the form (69):

Pw(W, t)

ĴPw(−W, t)
= eβ(W−�F) (81)

for the canonical-like initial condition �(ẋt0 ,xt0 , t0). However, the derivation of (81) shows
that if one introduces formally any quantities Q and W defined by (78) and (79), respec-
tively, then (81) follows as an identity. To the contrary as shown in this paper the NESS
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Onsager-Machlup theory does define physical heat and work, which lead to a transient fluc-
tuation theorem of the form (69).

(3b) In this paper we derived transient fluctuation theorems using the NESS Onsager-
Machlup theory for the work distribution Pw±(W, t; η). The transient fluctuation theorems
[13] (as well as those in [35, 36, 39, 40]) hold for any time for an equilibrium initial dis-
tribution function only. For a general, i.e. any, initial condition (including equilibrium), an
asymptotic fluctuation theorem [6, 7, 15, 16] can be derived, in the form:

lim
t→+∞

Pw(W, t)

Pw(−W, t)
= eβW (82)

for a work distribution function Pw(W, t). In spite of the formal analogy of (81) and (82),
they are of an entirely different nature [14, 42]. To be sure, (82) can be formally derived in
the long time limit from (81), if Pw(W, t) = ĴPw(W, t), �F = 0 and the initial condition
is given by �(ẋt0 ,xt0 , t0). However, (82) makes a much stronger statement, because it not
only holds for the specific canonical-like initial condition �(ẋt0 ,xt0 , t0), but for any initial
condition, which would require some dynamical stability condition, e.g. a condition for the
system to approach a unique steady state for t → +∞.

In this connection, one can ask whether both work distribution functions Pw+(W, t; η)

and Pw−(W, t; η), given by (63), obey the asymptotic fluctuation theorem for any initial
condition. The answer is no, as was shown in [6] for the distribution function Pw+(W, t; η)

for the dragged Brownian particle. In fact, this could occur when the work W+ or W−
appears as a boundary term of the form X(xt ) − X(xt0), for a function X(xs) of xs , rather
than as a functional along the full path {xs}s∈[t0,t].

Acknowledgement We gratefully acknowledge financial support of the National Science Foundation, un-
der award PHY-0501315.

Appendix 1: Dissipation Functions and Entropy Production Rate

In this Appendix we give a derivation of (31) and (32).
Using (21) and (35) we obtain

L(ẍs ,−ẋs ,xs ,−s; (−μ,�T)) −L(ẍs ,−ẋs ,xs ,−s; (−μ,−�T))

= −
N∑

j=1

αj

4kB(T + �Tj)

[
−ẋjs − 1

αj

Fj (xs ,−s;−μ) + mj

αj

ẍjs

]2

+
N∑

j=1

αj

4kB(T − �Tj)

[
−ẋjs − 1

αj

Fj (xs ,−s;−μ) + mj

αj

ẍjs

]2

= 1

kB


(3)
− (ẍs , ẋs ,xs , s;η) (83)

with η = (μ,�T) and βj = 1/[kB(T + �Tj)]. Combining (83) and L(ẍs ,−ẋs ,xs ,−s; η)

−L(ẍs ,−ẋs ,xs ,−s; η) = 
(3)
+ (ẍs , ẋs ,xs , s; η)/kB = 0 we have

L(ẍs ,−ẋs ,xs ,−s; (±μ,�T)) −L(ẍs ,−ẋs ,xs ,−s; (±μ,±�T))

= 1

kB


(3)
± (ẍs , ẋs ,xs , s;η). (84)
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On the other hand, by (27), (28) and (84) we obtain

±(ẍs , ẋs ,xs , s;η) = −kB [L(ẍs , ẋs ,xs , s; (μ,�T)) +L(ẍs ,−ẋs ,xs ,−s; (±μ,�T))]

+
(3)
± (ẍs , ẋs ,xs , s;η), (85)

Ṡ±(ẍs , ẋs ,xs , s;η) = kB [L(ẍs , ẋs ,xs , s; (μ,�T)) −L(ẍs ,−ẋs ,xs ,−s; (±μ,�T))]

+
(3)
± (ẍs , ẋs ,xs , s;η). (86)

Inserting (21) into (85) and (86) we obtain (31) and (32), respectively.

Appendix 2: Work based on the NESS Onsager-Machlup Theory

In this Appendix we give a derivation of (54).
Using (43), (47), (48), (49) and (50) we obtain

W±({xs};η) +
N∑

j=1

1

αj

∫ t

−t

ds
[
F

(e)
j± (xs , s;μ) − mẍjs

]
F

(o)
j± (xs , s;μ)

+
N∑

j=1

�Tj

T

∫ t

−t

ds
[
F

(e)
j± (xs , s;μ) − mj ẍjs

] [
ẋjs − 1

α
F

(o)
j± (xs , s;μ)

]

− 1 + (−1)(1±1)/2

2

N∑

j=1

αj

2

�Tj

T

∫ t

−t

ds

[
ẋjs + 1

αj

Fj (xs ,−s;±μ) − mj

αj

ẍjs

]2

+O

(∣∣∣∣
�Tj

T

∣∣∣∣
2
)

=
N∑

j=1

∫ t

−t

ds

[
−∂U±(xs , s;μ)

∂xjs

+ fj±(xs , s;μ) − mẍjs

]
ẋjs + �E±

=
∫ t

−t

ds

⎡

⎣∂U±(xs , s;μ)

∂s
+

N∑

j=1

fj±(xs , s;μ)ẋjs

⎤

⎦ + �E±

−
∫ t

−t

ds

⎡

⎣
N∑

j=1

d

ds

(
1

2
mẋ2

js

)
+

N∑

j=1

∂U±(xs , s;μ)

∂xs

ẋjs + ∂U±(xs , s;μ)

∂s

⎤

⎦

=
∫ t

−t

ds

⎡

⎣∂E±(ẋs ,xs , s;μ)

∂s
+

N∑

j=1

fj±(xs , s;μ)ẋjs

⎤

⎦ + �E±

−
∫ t

−t

ds
dE±(ẋs ,xs , s;μ)

ds

=
∫ t

−t

ds

⎡

⎣∂E±(ẋs ,xs , s;μ)

∂s
+

N∑

j=1

fj±(xs , s;μ)ẋjs

⎤

⎦ . (87)

Therefore, we obtain (54) with (55), (56), (57) and (58).



664 T. Taniguchi, E.G.D. Cohen

Appendix 3: Transient Fluctuation Theorems

In this Appendix we derive (68) and (69) in the case of the initial condition (67).
Using the definition (66) of Ew±(σ, t; η) with the functional average (64) under the initial

distribution function (67) we obtain

Ew±(β − σ, t;η) =
∫

dẋf

∫
dxf

∫ (ẋt ,xt )=(ẋf ,xf )

(ẋ−t ,x−t )=(ẋi ,xi )

Dxs

∫
dẋi

∫
dxi

× e−(β−σ)W±({xs };η)Px({xs})�±(ẋi ,xi ,−t;μ)

= e−β�F±
∫

dẋf

∫
dxf

∫ (ẋt ,xt )=(ẋf ,xf )

(ẋ−t ,x−t )=(ẋi ,xi )

Dxs

∫
dẋi

∫
dxi

× eσW±({xs };η)�±(ẋf ,xf , t;μ)Î±Px({xs};η)

= e−β�F±
∫

dẋf

∫
dxf

∫ (ẋt ,xt )=(ẋf ,xf )

(ẋ−t ,x−t )=(ẋi ,xi )

Dxs

∫
dẋi

∫
dxi

×�±(−ẋf ,xf ,−t;±μ)Î±e−σW±({xs };η)Px({xs};η)

= e−β�F± Î±
∫

dẋf

∫
dxf

∫ (ẋ−t ,x−t )=(ẋf ,xf )

(ẋt ,xt )=(ẋi ,xi )

Dxs

∫
dẋi

∫
dxi

×�±(−ẋf ,xf ,−t;μ)e−σW±({xs };η)Px({xs};η) (88)

= e−β�F± Î±
∫

dẋf

∫
dxf

∫ (ẋt ,xt )=(ẋf ,xf )

(ẋ−t ,x−t )=(ẋi ,xi )

Dxs

∫
dẋi

∫
dxi

× e−σW±({xs };η)Px({xs};η)�±(ẋi ,xi ,−t;μ) (89)

= e−β�F± Î±Ew±(σ, t;η), (90)

where we used (22), (53), (59) and �±(ẋf ,xf , t;μ) = �±(−ẋf ,xf ,−t;±μ) noting (51).
Here, in the transformation from (88) to (89) we exchanged the integral variables xi , ẋi ,xf

and ẋf with xf , ẋf ,xi and ẋi , respectively, and used the relation �±(ẋi ,xi ,−t;μ) =
�±(−ẋi ,xi ,−t;μ). Therefore, we obtain (68).

Using (68) we obtain

Ew±(σ, t;η) = e−β�F± Î±Ew±(β − σ, t;η). (91)

From (65) and (91) we can derive

Pw±(W, t;η) = 1

2π

∫ +∞

−∞
dσ eiσWe−β�F± Î±Ew±(β − iσ, t;η)

= eβ(W−�F±)Î±
1

2π

∫ +∞−iβ

−∞−iβ

dσ ′ eiσ ′(−W)Ew±(iσ ′, t;η)

= eβ(W−�F±)Î±Pw±(−W, t;η), (92)

where we used σ ′ ≡ −iβ − σ and that, noting (66) the function Ew±(iσ ′, t; η) e−iσ ′W does
not have any pole in the complex plane for Im{σ ′} ∈ [0,−β] with the imaginary part Im{σ ′}
of σ ′. Equation (92) leads to (69).
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Appendix 4: Average Work Rates in Class C

Energy Transfer Model by a Temperature Difference

In this Appendix, we calculate the average work rate Ẇ+ for an energy transfer model driven
by a temperature difference in a NESS.

First we introduce x̄t and �xt as

x̄t ≡ x1t + x2t

2
, (93)

�xt ≡ x1t − x2t . (94)

From (11), (93) and (94) we can derive the Langevin equations for x̄t and �xt separately as

m ¨̄xt + α ˙̄xt = me−ωmt d

dt
eωmt dx̄t

dt
= ζ1t + ζ2t

2
, (95)

m�ẍt + α�ẋt + 2κ�xt = me−(ωa+ωb)t d

dt
eωat d

dt
eωbt�xt = ζ1t − ζ2t

(96)

with ωm ≡ α/m, ωa ≡ √
ω2

m − (8κ/m) and ωb ≡ (ωm − ωa)/2. Solving (95) and (96) we
obtain

x̄t = x̄t0 + 1

ωm

[
1 − e−ωm(t−t0)

] ˙̄xt0

+ 1

2m

∫ t

t0

du1

∫ u1

t0

du2 e−ωm(u1−u2)(ζ1u2 + ζ2u2), (97)

�xt =
{
�xt0 + 1

ωa

[
1 − e−ωa(t−t0)

] (
ωb�xt0 + �ẋt0

)}
e−ωb(t−t0)

+ 1

m

∫ t

t0

du1

∫ u1

t0

du2 e−ωa(u1−u2)−ωb(t−u2)(ζ1u2 − ζ2u2). (98)

Using (97) we obtain

˙̄xt = e−ωm(t−t0) ˙̄xt0 + 1

2m

∫ t

t0

du e−ωm(t−u)(ζ1u + ζ2u) (99)

for the time-derivative of the position x̄t .
By the expression of the work W+ in Table 3 and using (93) and (94) the average of the

work rate can be expressed as

〈
dW+({xs},�T )

dt

〉
= �T

T

[
κ

〈
�xt

˙̄xt

〉 + m

2

〈
d�ẋt

˙̄xt

dt

〉]
+O

(∣∣∣∣
�T

T

∣∣∣∣
2
)

(100)

using �ẋt and x̄t for the energy transfer model driven by a temperature difference. In
the NESS, the quantity 〈�ẋt

˙̄xt 〉 should be independent of the time t and 〈d�ẋt
˙̄xt/dt〉 =

d〈�ẋt
˙̄xt 〉/dt , so we can neglect the term (m/2) 〈d�ẋt

˙̄xt/dt〉 on the right-hand side of
(100) in such a state. Moreover, the NESS should be realized in the long-time limit, so we
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can neglect the first terms of the right-hand side of (98) and (99) to calculate a quantity in
the NESS, noting that ωm and the real part of ωb (as well as the real part of ωa) are positive.

Using these arguments, the average work rate Ẇ+ in the NESS up to the second order of
(�T )2 can be calculated by

Ẇ+ = lim
t→+∞

κ�T

T

〈
�xt

˙̄xt

〉

= lim
t→+∞

κ�T

2m2T

∫ t

t0

du1

∫ u1

t0

du2

∫ t

t0

du3 〈(ζ1u2 − ζ2u2)(ζ1u3 + ζ2u3)〉

× e−ωa(u1−u2)−ωb(t−u2)−ωm(t−u3)

= ακkB(�T )2

m2T (ωa + ωb + ωm)(ωb + ωm)

= ακkB(�T )2

2T (α2 + mκ)
, (101)

where we used the relation 〈(ζ1s + ζ2s)(ζ1u − ζ2u)〉 = 2αkB�T δ(s − u).

Electric Circuit with Two Resistors

In this Appendix, we calculate the average work rate Ẇ+ for the electric circuit model with
two resistors. By the expression shown in Table 3 for the work W+ in the electric circuit
with two resistors, the average work rate is given by 〈V I2t 〉 = V 〈q̇2t 〉, so that calculation of

〈q̇2t 〉 in the long time limit is sufficient to calculate the average work rate Ẇ+ in the NESS.
To calculate 〈q̇2t 〉 we first note that

C (L〈q̈1t 〉 + R1〈q̇1t 〉〉) = 〈q2t 〉 − 〈q1t 〉, (102)

C (V − R2〈q̇2t 〉) = 〈q2t 〉 − 〈q1t 〉 (103)

by taking the average of the Langevin equation (13). Inserting 〈q1t 〉 = 〈q2t 〉 + C(R2〈q̇2t 〉 −
V ) from (103) into (102) we obtain

LCR2φ̈t + (L + CR1R2) φ̇t + (R1 + R2)φt = 0 (104)

for φt ≡ 〈q̇2t 〉 − V/(R1 + R2). Note that the differential equation (104) for φt has the same
form as the one for 〈�xt 〉 obtained by taking the average of the Langevin equation (96),
whose solution satisfies limt→+∞〈�xt 〉 = 0 by the average of (98). In a similar way for
〈�xt 〉 we can also show that limt→+∞ φt = 0, i.e.

lim
t→+∞〈q̇2t 〉 = V

R1 + R2
(105)

which is the value 〈q̇2t 〉 in the NESS. Using this and Ẇ+ = limt→+∞ V 〈q̇2t 〉, we obtain

Ẇ+ = V 2/(R1 + R2).
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